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LETTER TO THE EDITOR

Static density–density correlation function for interacting
ground states with ensemblev-representable number
densities

Behnam Farid
Max-Planck-Institut f̈ur Festk̈orperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany

Received 24 October 1997

Abstract. We consider the zero-temperature static density–density correlation functionχ(r, r′)
corresponding to ground states (GSs) of arbitrary interacting systems, as opposed to those
corresponding to systems with pure-state non-interactingv-representable GS number densities.
The extended formalism involves some strict non-perturbative contributions which are not
accounted for by the conventional linear-response theory. The approach therefore proves useful
in addressing problems related to properties of ground and excited states of correlated systems.

The number density (ND)n(r) corresponding to the ground state (GS) of an interacting
system (which we for simplicity, but without loss of generality, assume to be a system
of spinless fermions) corresponds to an external potentialv(r) and thus is referred to as
interactingv-representable(v-rep). The change in this ND brought about by a static and
local external potential, which we denote byδv(r), is described, to linear order inδv(r),
by the static density–density correlation functionχ(r, r′). We have

χ(r, r′) := δn(r)

δv(r′)
. (1)

Sincen(r) is the central quantity of the GS density-functional theory (DFT) (Hohenberg
and Kohn (1964); for a comprehensive review see Dreizler and Gross (1990)), it is most
natural that one calculatesχ within this framework. In practical applications of the DFT,
the formalism due to Kohn and Sham (1965) (KS) is of fundamental importance. In the
original KS formalism, the GS functionalF [n] := Ev[n] − ∫ d3r v(r)n(r), which does not
explicitly depend onv (in contrast to the GS total-energy functionalEv[n]), is decomposed
asTs [n] + EH [n] + Exc[n], whereTs [n] stands for the kinetic-energy functional of a ficti-
tious ‘non-interacting’ system, the KS system,EH [n] for the electrostatic Hartree energy
andExc[n] for the exchange–correlation energy functional defined as the difference between
F [n] andTs [n] +EH [n]. The minimization of the energy functional is then reduced to the
self-consistent solution of a one-particle Schrödinger-type equation, the KS (1965) equation
(we use the Hartree atomic units):[

− 1

2
∇2+ veff (r; [n])

]
ψi(r) = εiψi(r) (εi 6 εi+1). (2)

This equation is arrived at through substituting in the Euler–Lagrange equation
δEv[n]/δn(r) = µ the above-indicated decomposed expression forEv[n], leading to
δTs [n]/δn(r)+veff (r; [n]) = µ; the constantµ, a Lagrange multiplier, is determined by the
requirement that the solutionn(r) of the Euler–Lagrange equation satisfy

∫
d3r n(r) = N ,
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with N denoting the number of electrons in the system. Here, as in equation (2),
veff (r; [n]) := v(r)+ δ{EH [n]+Exc[n]}/δn(r) ≡ v(r)+vH (r; [n])+vxc(r; [n]) in which
the Hartree and the exchange–correlation potential,vH and vxc respectively, correspond
in an obvious way toEH [n] and Exc[n]. KS (1965) have thus transformed the problem
of determiningn(r) corresponding to an interacting system to one of a ‘non-interacting’
system:

n(r) =
N∑
i=1

|ψi(r)|2 (3)

where theψis are normalized eigenfunctions of equation (2). Recall that the self-consistent
solution of equations (2) and (3)by constructionyields the solutionn(r) of the Euler–
Lagrange equation (see further on, however) so that thisn(r) must be identical with the
ND pertaining to the GS of theinteractingsystem.

As should be evident, the validity of the formalism which we have briefly described
above crucially depends on the assumption concerning the existence of the functional
derivative ofTs [n] with respect ton in a neighbourhood ofn(r).

A ND describable as in equation (3) is referred to aspure-state non-interactingv-rep,
‘pure state’ signifying the fact thatn(r) corresponds to a single anti-symmetricN -particle
wavefunction; ‘non-interactingv-rep’ indicating that this pure state (i.e. wavefunction) is
an eigenstate of a ‘non-interacting’ Hamiltonian, i.e. it is a single Slater determinant. Thus
the question as to whetherδTs [n]/δn(r) exists in some neighbourhood ofn(r) is equivalent
to that of whether the functionn(r) under consideration is pure-state non-interactingv-rep
(see, e.g., Dreizler and Gross (1990), p 49). The fact that there exist NDs, i.e. non-
negative and normalized-to-N functions of r (possibly extended by the requirement of
once-differentiability to guarantee a finite kinetic energy (Gilbert (1975), Lieb (1982); see
IN defined below)), which are not pure-state non-interactingv-rep (Englisch and Englisch
1983) implies that in generalTs [n] is not a differentiable functional ofn.

The kinetic-energy functional due to Lieb (1982, 1983)

TL[n] := inf
D̂→n

tr
{
D̂T̂

}
(4)

defined, for three-dimensional systems, on the setIN := {n|n(r) > 0, n1/2(r),∇n1/2(r) ∈
L2,

∫
d3r n(r) = N}, has been shown (Englisch and Englisch 1983, 1984a, b) to be

differentiable on the set ofensemblev-rep NDs (i.e. all physicalNDs) and nowhere else.
In equation (4),D̂ stands for the density operator, defined in terms of a complete set of
orthonormal anti-symmetricN -particle states{|9s〉}: D̂ := ∑

s ds |9s〉〈9s |, whereds > 0
and

∑
s ds = 1. With

FL[n] := inf
D̂→n

tr
{
D̂(T̂ + V̂ )} (5)

the counterpart ofF [n] introduced above, wherêV stands for the interaction part of the
total Hamiltonian, the exchange–correlation energy functional is defined through the same
formal expression as that involvingF [n] andTs [n] with these replaced byFL[n] andTL[n]
respectively. Thus the KS equation corresponding to thisExc[n] retains the form presented
in equation (2), with the difference thatvxc is now defined as the first functional derivative
of Lieb’s Exc[n]. The expression for the ND in equation (3), on the other hand, has to be
changed into

n(r) =
∞∑
i=1

fi |ψi(r)|2 (6)
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where the ‘occupation numbers’fi must satisfy the following constraints:fi = 1 for εi < µ;
fi = 0 for εi > µ; 0 6 fi 6 1 for εi = µ; and

∑∞
i=1 fi = N . These occupation numbers

have to be obtained self-consistently andµ coincides with the eigenenergy of the multiplet of
the highest occupied (degenerate) eigenfunctions of equation (2)†. A natural consequence
of the restrictions imposed upon thefis is that

∑
i;εi=µ fi = M, an integer, satisfying

0 6 M 6 gµ wheregµ := ∑
i;εi=µ 1. We adopt the following conventions: whenψN is

non-degenerate (recall that we number the states according toεi 6 εi+1), εN < µ < εN+1

andM = 0; when, on the other hand,ψN is degenerate,µ = εN−M+1 = · · · = εN−M+gµ
andM > 1. Clearly,gµ > M and whengµ > M, some of thefis (at least two) satisfy
0 6 fi < 1. The above conventions imply thatM = 0 and gµ = 0 are equivalent.
Note in passing that by considering the GS total-energy functionalEv[n] as a functional
of v, denoted byE[v] (explicitly, E[v] := infn∈IN {FL[n] + ∫ d3r v(r)n(r)}), we have
n(r) = δE[v]/δv(r), for FL[n] ≡ supv∈V{E[v] − ∫ d3r v(r)n(r)}, with V denoting the
set of all local potentials pertaining toL3/2 + L∞ (v ∈ L3/2 + L∞ ⇐⇒ v = v3/2 + v∞,
with v3/2 ∈ L3/2, i.e. {∫ d3r |v3/2(r)|3/2}2/3 < ∞, and |v∞| a bounded function), is the
Legendre transform ofE[v] (Lieb 1982, 1983). From this and equation (1) it follows that
χ(r, r′) ≡ δ2E[v]/(δv(r) δv(r′)) and hence thatχ(r, r′) ≡ χ(r′, r).

As mentioned above, it is most natural to evaluateχ(r, r′) within the (generalized)
KS formalism. To this end one changesv into v + δv and evaluates the corresponding
self-consistent ND, to be denoted byn + δn; this density pertains to the perturbed
interactingsystem. At self-consistency the effective potential in equation (2) has the form
veff (r; [n+ δn]) which by first-order functional expansion aroundn can be written as

veff (r; [n])+
∫

d3r ′ C(r, r′) δn(r′)

where

C(r, r′) := δ(vH (r; [n′])+ vxc(r; [n′]))
δn′(r′)

∣∣∣∣
n′=n
≡ δ2(EH [n′] + Exc[n′])

δn′(r) δn′(r′)

∣∣∣∣
n′=n

≡ vc(r − r′)+Kxc(r, r′) (7)

with vc(r − r′) the two-particle (e.g. Coulomb) interaction function andKxc(r, r′) :=
δvxc(r; [n′])/δn′(r′)|n′=n (since bothC and Kxc are second functional derivatives with
respect ton′, we haveC(r, r′) = C(r′, r) andKxc(r, r′) = Kxc(r′, r)); the aboveC δn in
veff +C δn can be merged withδv and thusδn can be viewed as the change in the density
of the non-interacting KS system brought about by the change in the effective potential
veff [n], i.e. δveff [n], equal toδv′ := δv + C δn. Consequently, by linear-response theory
we haveδn = χ0 δv

′ ≡ χ0 δv + χ0C δn, or equivalently

δn = (I − χ0C)
−1χ0 δv. (8)

Hereχ0 stands for the density–density correlation function of the non-interacting KS system,

χ0(r, r
′) := δn(r)

δveff (r′; [n])
. (9)

By comparing equation (8) with equation (1) it follows that

χ = (I − χ0C)
−1χ0 ⇐⇒ χ = χ0+ χ0Cχ. (10)

The second of these equations is of the Dyson type, the interaction effects neglected inχ0

being accounted for by a two-point correlation function,C. Under the assumption that the

† Throughout we ascribe ‘degeneracy’ both to eigenfunctions (somewhat in violation of purists’ usage) and
eigenvalues.
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explicit functional form ofvxc[n] is known (as is the case for instance within the commonly
used local-density approximation (LDA) (Kohn and Sham 1965)), evaluation ofKxc[n] and
thus ofC[n] is straightforward. We note that since bothC andχ are symmetric (see the text
following equation (7) and that following equation (6)), fromχ0 = χ(I +Cχ)−1, which is
obtained from equation (10), it is seen that similarlyχ0(r, r

′) = χ0(r
′, r).

In what follows we give our full attention to the explicit evaluation ofχ0. To our
knowledge no treatment ofχ0 corresponding to systems with ensemblev-rep ND (as
exemplified by the right-hand side of equation (6)) is available in the literature. As we
shall see, theχ0 pertaining to such systems strongly depends on the nature of the perturbing
potential. This is in contrast with the commonly held view that, within the linear-response
theory, the response functions are independent of the perturbations.

In obtaining the staticχ0, following the definition in equation (9), we need to calculate
variations inn(r) to linear order in δv, and thus variations in bothψis andfis to linear
order in δv (in what follows we denote thelinear variations byδ1). It is in particular
considerations with regard to variations infis that make determination ofχ0 non-trivial.
An fi can vary in two ways, stepwise or smoothly. The former type of variationcannot
be dealt with by perturbation theory, or any theory based on the assumption of an analytic
connection betweenδv andδfi . This stepwise variation infi is a consequence of the strict
constraints imposed upon the ‘occupation’ numbers:fi can deviate from zero and unity if
it corresponds to the highest occupied multiplet of degenerate KS eigenstates. Thusany
perturbationδv, no matter how weak, that removes a degeneracy atµ in anyarbitrary order
of the perturbation theory, gives rise to ajump (towards 0 or 1) in somefi (or fis). The
second type of variation that anfi can undergo is a continuous variation which concerns
only the fis which pertain to those degenerate states atµ that remain degenerate toall
orders of the perturbation theory (‘exact’ degeneracies). Generally, such degeneracies occur
when the symmetry group of the perturbationδv coincides with that of the external potential
v. However (Messiah 1975), even for perturbationsδv whose symmetry groups are proper
subgroups of the symmetry group ofv, certain of the degeneracies can be exact (the ‘Stark
effect’).

The only general and practical way for separating ‘exact’ from ‘approximate’
degeneracies is that of self-consistent solution of the generalized KS equations (equations (2)
and (6)) for the external potentialv + η δv with η → 0. This self-consistent calculation
already indicates that in generalχ0, and in consequenceχ , does not describe some entirely
inherent property of the unperturbed interacting system, this being in stark contrast with the
commonly held view (see above). We have to emphasize that the degeneracy of the KS
orbitals atµ has no (at least not to our knowledge) direct bearing on the possible degeneracy
of the lowest-lying many-body eigenstate of theinteracting system. Conversely, for the
(average) ND pertaining to some ensemble of degenerate GSs of an interacting system, the
degeneracy of the corresponding KS orbitals atµ becomes unavoidable (excluding some
specific cases in which some linear dependencies lead to some cancellations (Levy and
Perdew 1985)), since such densities cannot correspond to pure states, either interacting or
non-interacting.

Following the explicit self-consistent calculation forv+ η δv, η→ 0, for a givenδv(r)
(see above), we know which of the possible degeneracies atµ are exact. We signify the
quantities pertaining to the self-consistent problem associated withv + η δv, η → 0, by a
tilde: ψ̃i(r), ε̃i , µ̃ andf̃i . These quantities areall functionals ofδv and, exceptsomeof the
f̃is, approach the same limits asη→ 0 (the limits for the wavefunctions are defined up to
unitary transformations), irrespective of the local functionδv′ substituted forδv in v+η δv;
as we have mentioned above, the changes in thefis associated withεi = µ crucially depend
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on the symmetry group ofδv (this in so far as the irreducible representation, to which the
degenerate orbitals atµ belong, is concerned). For thelinear variation inn in equation (6)
we have

δ1n(r) =
<∑
i

{
[δ1ψ̃i(r)]ψ̃

∗
i (r)+ ψ̃i(r)[δ1ψ̃

∗
i (r)]

}
+

=∑
i

f̃i

{
[δ1ψ̃i(r)]ψ̃

∗
i (r)+ ψ̃i(r)[δ1ψ̃

∗
i (r)]

}
+
=∑
i

[δ1f̃i ]|ψ̃i(r)|2 (11)

where
∑<

i stands for
∑

i ;̃εi<µ̃ and
∑=

i for
∑

i ;̃εi=µ̃. Variations inall f̃is, in contrast to
those in possiblysomeof the fis, are smooth (in view of our conventions (see the text
following equation (6)), the set{f̃i |̃εi = µ̃, ∀i} may be empty). Withδ1ψ̃i orthogonal to
ψ̃i , completeness of{ψ̃i |∀i} allows us to write

δ1ψ̃i(r) =
∑
j ;j 6=i

αj,i [δv]ψ̃j (r)

with the coefficients to be determined by first-order perturbation theory or degenerate
perturbation theory, withδv being the perturbation, depending on whetherψ̃i is non-
degenerate or belongs to some manifold of degenerate eigenstates, respectively. In view
of δv, and apparently notδveff (see equation (9)), playing the role of the perturbation
potential, we point out that sinceδ1ψ̃i stands for thenon-self-consistentfirst-order change
in ψ̃i , the associatedδ1n doesnot enter in the argument [n] of veff [n] in equation (2), so that
within the present contextδv andδveff are interchangeable. From theseδ1ψ̃is, perturbation
results forδ1n1(r) andδ1n2(r), corresponding to the first term and the second term on the
right-hand side of equation (11) respectively, are easily obtained and thus the associated
χ0;k(r, r′) := δ1nk(r)/δv(r

′), k = 1, 2, are readily determined (see equation (9)).
Through some straightforward algebra one obtains

χ0;1(r, r′) = 2
>∑
i

<∑
j

ψ̃i(r)ψ̃
∗
i (r
′)ψ̃j (r′)ψ̃∗j (r)

ε̃j − ε̃i (12)

which is the standard expression employed for thetotal χ0 and indeedχ0;1 coincides with
this for pure-state non-interactingv-rep GS NDs; in such an eventM = 0 and the tildes
on ψ̃is and ε̃is can be discarded (see our conventions following equation (6) above). It
can easily be verified thatχ0;1(r, r′) = χ0;1(r′, r) (we assume that for each term on the
right-hand side of equation (12) corresponding to some(i, j), the associated time-reversed
term, corresponding to(i, j), is also included; that is, we do not allow spontaneous breaking
of the time-reversal symmetry).

For determiningχ0;2 we have to make use of the degenerate perturbation theory. As
indicated above, the degeneracies involved here (i.e. those corresponding toε̃i = µ̃) are
exact, that is they are not removed at any order of the perturbation theory. We denote the
number of the degenerate states atµ̃ by gµ̃ (≡

∑=
i 1) and employ capital letters for their

subscripts; thus

{ψ̃I |I = 1, . . . , gµ̃} ≡ {ψ̃N−M̃+i |i = 1, . . . , gµ̃}
whereM̃ = ∑=i f̃i . From the rudiments of the degenerate perturbation theory (in respect
of some specific features of our present consideration, perhaps most explicitly discussed
by Byron and Fuller 1969), it follows that owing to the exactness of the degeneracies,δv

doesnot induce any observable transitions inside the manifold of degenerate eigenstates
at µ̃. As a result, in so far as calculations are concerned, the only consequence of the
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degeneracy of these states is the necessity to obtaining the (unique) unitary (or orthogonal)
transformation amongst these eigenfunctions which renders application of the (degenerate)
perturbation theory meaningful; we denote the appropriately transformed eigenfunctions by
superscript(0), ψ̃(0)

i (r). We have

ψ̃
(0)
I =

gµ̃∑
J=1

β
(I)
J ψ̃J .

This transformation is effected through solution of the eigenvalue problem

gµ̃∑
J=1

(ψ̃I , δv ψ̃J )β
(K)
J = ε̃(1)I β(K)I I,K = 1, . . . , gµ̃

where (φ,Aϕ) := ∫
d3r φ∗(r)A(r)ϕ(r) and ε̃(1)I denotes the first-ordercorrection to ε̃I .

The exactness of the degeneracy atµ̃ implies that this correction is the same forall
I ∈ {1, . . . , gµ̃}; we have(ψ̃I , δv ψ̃J ) = ẽδI,J , with ε̃(1)I ≡ ẽ, independently ofI (evidently
ẽ→ 0 as‖δv‖ → 0; the state independence ofẽ implies thatδv has a constant projection
onto the subspace{ψ̃I |I = 1, . . . , gµ̃}). Further, normalization of the eigenfunctions implies
that β(J )I = δI,J , so ψ̃(0)

I ≡ ψ̃I . Now from the degenerate perturbation theory, forχ0;2 we
readily obtain

χ0;2(r, r′) = 2
{∑

I

f̃I ψ̃I (r)ψ̃
∗
I (r
′)
} 6=∑

j

ψ̃j (r
′)ψ̃∗j (r)

µ̃− ε̃j (13)

where
∑ 6=
j stands for

∑
j ;̃εj 6=µ̃. It can easily be verified thatχ0;2(r, r′) = χ0;2(r′, r) (see

the comment following equation (12)).
For calculating the third, and the last, contribution toχ0, i.e. χ0;3(r, r′) :=

δ1n3(r)/δv(r
′) with δ1n3 denoting the last term on the right-hand side of equation (11),

we proceed as follows. The variationsδv and δ1n are related throughδv(r) =∫
d3r ′ χ−1

0 (r, r′) δ1n(r
′) (recall that in the present contextδv ≡ δveff [n]). Further, since

δv is local, from the first-order perturbation theory we have

δ1̃εi =
∫

d3r |ψ̃i(r)|2 δv(r).

Making use of the last expression forδv(r) and the fact thatδ1̃εI ≡ ε̃(1)I = 0, I = 1, . . . , gµ̃
(in view of the fact that

∫
d3r ′ χ0(r, r

′) = 0 (see the paragraph following equation (19)
below), which holds equally whenχ0 is replaced byχ−1

0 , this δv has zero average, so that
the above-introduced̃e is identically vanishing), we obtain the following ‘linear’ (see further
on) equation for{δ1f̃I |I = 1, . . . , gµ̃}:

gµ̃∑
J=1

(A)I,J (δ1f̃J ) = γI I = 1, . . . , gµ̃ (14)

where

(A)I,J :=
∫

d3r d3r ′ |ψ̃I (r)|2χ−1
0 (r, r′)|ψ̃J (r′)|2 (15)

γI := −
∫

d3r d3r ′ |ψ̃I (r)|2χ−1
0 (r, r′)

6∑
j

f̃j δ1|ψ̃j (r′)|2. (16)
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Here
∑6
j stands for

∑
j ;̃εj6µ̃. The solutionδ1f̃I of equation (14) can formally be written

as

δ1f̃I =
∑
J

(A−1)I,J γJ

(see the paragraph preceding the concluding remarks). From equation (11) it is seen that

6∑
j

f̃j
{
δ1|ψ̃j (r)|2/δv(r′)

} = χ0;1(r, r′)+ χ0;2(r, r′)

hence

χ0;3(r, r′) = −
∫

d3r1 d3r2 D(r, r1)χ
−1
0 (r1, r2)

{
χ0;1(r2, r

′)+ χ0;2(r2, r
′)
}

(17)

where

D(r, r1) :=
∑
I,J

|ψ̃I (r)|2(A−1)I,J |ψ̃J (r1)|2. (18)

Equation (17) can be transformed into the following, more appealing, form:

χ0;3 = χ0− χ0(χ0−D)−1χ0 ≡ −(I −Dχ−1
0 )−1D. (19)

The dependence of bothD and χ0 ≡ χ0;1 + χ0;2 + χ0;3 on χ0;3 implies thatχ0;3 has to
be obtained through a self-consistent calculation. One noteworthy conclusion that can be
drawn from equation (19) is that becauseχ0(r, r

′) = χ0(r
′, r) andD(r, r′) = D(r′, r),

the equalityχ0;3(r, r′) = χ0;3(r′, r) holds.
Before concluding this work, we should like to point out thatχ0 is singular: it

possesses a zero eigenvalue corresponding to a constant eigenvector; this can readily be
verified from the fact thatχ0;k(r, r′), k = 1, 2, 3 (in equations (12), (13) and (17)), satisfies∫

d3r ′ χ0;k(r, r′) = 0. The standard technique for dealing with the (quasi-) inverse ofχ0,
which we encounter in equations (15), (16) and (17), is that of singular-value decomposition,
SVD (see, e.g., Stoer and Bulirsch 1980). It is important to note thatχ0;1 is negative semi-
definite (to see this, write the right-hand side of equation (12) as

2
>∑
i

<∑
j

{ψ̃i(r)ψ̃∗j (r)}{ψ̃i(r′)ψ̃∗j (r′)}∗/(̃εj − ε̃i )

and recognize that the denominator is always negative), whereasχ0;2 in addition to the
above-indicated zero eigenvalue has both positive and negative eigenvalues (the energy
denominator in equation (13) has no definite sign). This implies thatχ0 can have positive
eigenvalues (see below).

In conclusion, we have determined the density–density correlation functionχ0

appropriate to the generalized ‘non-interacting’ KS system pertinent to thelocal external
potentialv. By construction, the ND pertaining to an ensemble of degenerate GSs of this
system is identical with the GS ND of the interacting system of electrons moving in the force
field of v. In cases in which the GS ND of the interacting system is pure-state non-interacting
v-rep (or equivalently, the GS of the above-mentioned KS system is non-degenerate),
χ0 coincides with the zeroth-order term in the many-body perturbation expansion for
the density–density correlation functionχ of the fully interacting system, with the ‘non-
interacting’ Hamiltonian being the conventional KS Hamiltonian. Forproperensemblev-rep
NDs, on the other hand, this non-degenerate many-body perturbation theory fails and thus
χ0 cannot be viewed as a zeroth-order approximation toχ within the context of the many-
body perturbation theory. Although calculation ofχ in terms ofχ0 requires knowledge
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of C := vc + Kxc (see equation (10)) and the exactKxc[n] (see equation (7)) is unknown
(it is known for instance within the LDA:KLDA

xc (r, r′) = {
dµxc(n(r))/dn(r)

}
δ(r − r′)

whereµxc(n(r)) stands forvLDAxc (r; [n])), it is important to realize that complete neglect of
Kxc[n] results in the random-phase approximation (RPA) forχ and in many instances this
approximation is already very satisfactory.

The commonly used RPA, as opposed to that in terms ofχ0 calculated in this work,
does not take account of the fact that the GS ND of an interacting system may be proper
ensemblev-rep. An important observation is then that for systems whose GS ND is not
pure-state non-interactingv-rep, the commonly usedχRPA doesnot approach the exactχ
in the limit of weak electron–electron interaction (or high density), whereas the RPA forχ

based uponχ0 as considered in the present workalwaysapproaches the correct limit.
The presentχ0 is in general a functional of the externally applied perturbation potential.

We have established that the symmetry of this potential is of significant influence on the
exact form ofχ0. Work to be published (Farid 1997) shows that thestatic χ0 considered
here plays a significant role within a framework designed for calculating energies and NDs
of N -electronexcitedstates of interacting systems. To give some appreciation of this matter,
suffice it to say that according to a theorem due to Perdew and Levy (1985),N -electron
excited states whose NDs are pure-state non-interactingv-rep form aproper subset of all
N -electron excited states.

Above we have pointed out that, in contrast to the commonly usedχ0 (which coincides
with our χ0;1 in equation (12)), our presentχ0 may have positive eigenvalues. In view of
this, let us consider the static dielectric response function (sometimes also referred to as the
‘test-charge’ dielectric function)E := I − vcP whereP stands for the static polarization
function. It can be shown thatP = (I + χvc)−1χ (or χ = (I − Pvc)−1P), so that within
the framework of the RPAERPA = I−vcPRPA holds withPRPA ≡ χ0. The negative semi-
definiteness of the conventionalχ0 implies that all eigenvalues of the conventionalERPA
are larger than or equal to unity; this is contrary to the exact case in whichE can in addition
possessnegativeeigenvalues (Kirzhnits 1976, Dolgovet al 1981, Caret al 1981). Negative
eigenvalues are excluded only in the long-wavelength limit (in other words,(φ, Eφ) 6< 0 for
a functionφ(r) whose Fourier spectral weightφ(q) is vanishing for|q| > q0 whereq0 is
smaller than the inverse of some macroscopic length scale in the system) and occurrence of
these does not imply thermodynamic instability (Kirzhnits 1976); rather, these eigenvalues
are of relevance to the formation of the Cooper pairs and the appearance of the phenomenon
of superconductivity (Kirzhnits 1976, Dolgovet al 1981). Our above considerations with
regard to sign of the eigenvalues ofχ0 ≡ χ0;1 + χ0;2 + χ0;3 suggest thatERPA calculated
in terms of our presentχ0 incorporates some essential correlation effects that are absent in
the conventionalERPA. Since thisERPA is a functional ofδv, which we have throughout
this work considered to be externally applied, existence of possible negative eigenvalues
of ERPA will be dependent upon the form ofδv. In the light of the connection between
the above-mentioned negative eigenvalues and formation of the Cooper pairs,δv may be
thought of as being induced by a static configuration of some particular combination of
phonon modes in an otherwise perfectly regular system. We should like to emphasize
however, that since we havenot studied in any depth the contribution ofχ0;2 + χ0;3 for
systems in the thermodynamic limit, our discussions with regard to the possible negative
eigenvalues ofERPA = I − vc(χ0;1+ χ0;2+ χ0;3) and the correspondence of these with the
phenomenon of superconductivity should be viewed as being merely suggestive at this stage
(it is however evident that when the Fermi surface in a metal does not allow for nesting,
the contributions ofχ0;2 andχ0;3 will be vanishingly small).
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